Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Antimicrob Agents ; 63(2): 107078, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161046

RESUMO

BACKGROUND AND OBJECTIVE: The use of extracorporeal membrane oxygenation (ECMO) as a cardiocirculatory or respiratory support has tremendously increased in critically ill patients. In the setting of ECMO support, invasive fungal infections are a severe cause of morbidity and mortality. This vulnerable population is at risk of suboptimal antifungal exposure due to an increased volume of distribution (Vd), drug sequestration and decreased clearance. Here, we aimed to summarize ex-vivo and clinical studies on the potential impact of ECMO on the pharmacokinetics (PK) of antifungal agents and dosing requirements. METHODS: A systematic search of the literature within electronic databases PubMed and EMBASE was conducted from database inception to 30 April 2023. Inclusion criteria were as follows: critically ill patients receiving ECMO regardless of age and reporting at least one PK parameter. RESULTS: Thirty-six studies met inclusion criteria, including seven ex-vivo experiments and 29 clinical studies evaluating three classes of antifungals: polyenes, triazoles and echinocandins. Based on the available ex-vivo PK data, we found a significant sequestration of highly lipophilic and protein-bound antifungals within the ECMO circuit such as voriconazole, posaconazole and micafungin but the PK of several antifungals remains to be addressed such as amphotericin B, isavuconazole and anidulafungin. Most clinical studies have shown increased Vd of some antifungals like fluconazole and micafungin, particularly in the pediatric population. Conflicting data exist about caspofungin exposure. CONCLUSIONS: The available literature on the antifungal PK changes in ECMO setting is scarce. Whenever possible, therapeutic drug monitoring is highly advised to personalize antifungal therapy.


Assuntos
Antifúngicos , Oxigenação por Membrana Extracorpórea , Humanos , Antifúngicos/farmacocinética , Caspofungina , Estado Terminal/terapia , Micafungina
2.
J Am Heart Assoc ; 12(3): e027749, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36734353

RESUMO

Background High-mobility group box 1 (HMGB1) is a major promotor of ischemic injuries and aseptic inflammatory responses. We tested its inhibition on neurological outcome and systemic immune response after cardiac arrest (CA) in rabbits. Methods and Results After 10 minutes of ventricular fibrillation, rabbits were resuscitated and received saline (control) or the HMGB1 inhibitor glycyrrhizin. A sham group underwent a similar procedure without CA. After resuscitation, glycyrrhizin blunted the successive rises in HMGB1, interleukin-6, and interleukin-10 blood levels as compared with control. Blood counts of the different immune cell populations were not different in glycyrrhizin versus control. After animal awakening, neurological outcome was improved by glycyrrhizin versus control, regarding both clinical recovery and histopathological damages. This was associated with reduced cerebral CD4+ and CD8+ T-cell infiltration beginning 2 hours after CA. Conversely, granulocytes' attraction or loss of microglial cells or cerebral monocytes were not modified by glycyrrhizin after CA. These modifications were not related to the blood-brain barrier preservation with glycyrrhizin versus control. Interestingly, the specific blockade of the HMGB1 receptor for advanced glycation end products by FPS-ZM1 recapitulated the neuroprotective effects of glycyrrhizin. Conclusions Our findings support that the early inhibition of HMGB1-signaling pathway prevents cerebral chemoattraction of T cells and neurological sequelae after CA. Glycyrrhizin could become a clinically relevant therapeutic target in this situation.


Assuntos
Proteína HMGB1 , Parada Cardíaca , Animais , Coelhos , Ácido Glicirrízico/farmacologia , Proteína HMGB1/metabolismo , Transdução de Sinais , Barreira Hematoencefálica/metabolismo
3.
Shock ; 58(3): 236-240, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35959782

RESUMO

Aim: Head and thorax elevation during cardiopulmonary resuscitation improves cerebral hemodynamics and ultimate neurological outcome after cardiac arrest. Its effect during extracorporeal cardiopulmonary resuscitation (E-CPR) is unknown. We tested whether this procedure could improve hemodynamics in swine treated by E-CPR. Methods and Results: Pigs were anesthetized and submitted to 15 minutes of untreated ventricular fibrillation followed by E-CPR. Animals randomly remained in flat position (flat group) or underwent head and thorax elevation since E-CPR institution (head-up group). Electric shocks were delivered after 30 minutes until the return of spontaneous circulation (ROSC). They were followed during 120 minutes after ROSC. After 30 minutes of E-CPR, ROSC was achieved in all animals, with no difference regarding blood pressure, heart rate, and extracorporeal membrane of oxygenation flow among groups. The head-up group had an attenuated increase in ICP as compared with the flat group after cardiac arrest (13 ± 1 vs. 26 ± 2 mm Hg at the end of the follow-up, respectively). Cerebral perfusion pressure tended to be higher in the head-up versus flat group despite not achieving statistical difference (66 ± 1 vs 46 ± 1 mm Hg at the end of the follow-up). Carotid blood flow and cerebral oxygen saturation were not significantly different among groups. Conclusion: During E-CPR, head and thorax elevation prevents ICP increase. Whether it could improve the ultimate neurological outcome in this situation deserves further investigation.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Animais , Reanimação Cardiopulmonar/métodos , Parada Cardíaca/terapia , Hemodinâmica/fisiologia , Pressão Intracraniana , Suínos , Tórax , Fibrilação Ventricular
4.
Crit Care ; 25(1): 369, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34774087

RESUMO

BACKGROUND: Extracorporeal cardiopulmonary resuscitation (E-CPR) is used for the treatment of refractory cardiac arrest. However, the optimal target to reach for mean arterial pressure (MAP) remains to be determined. We hypothesized that MAP levels critically modify cerebral hemodynamics during E-CPR and tested two distinct targets (65-75 vs 80-90 mmHg) in a porcine model. METHODS: Pigs were submitted to 15 min of untreated ventricular fibrillation followed by 30 min of E-CPR. Defibrillations were then delivered until return of spontaneous circulation (ROSC). Extracorporeal circulation was initially set to an average flow of 40 ml/kg/min. The dose of epinephrine was set to reach a standard or a high MAP target level (65-75 vs 80-90 mmHg, respectively). Animals were followed during 120-min after ROSC. RESULTS: Six animals were included in both groups. During E-CPR, high MAP improved carotid blood flow as compared to standard MAP. After ROSC, this was conversely decreased in high versus standard MAP, while intra-cranial pressure was superior. The pressure reactivity index (PRx), which is the correlation coefficient between arterial blood pressure and intracranial pressure, also demonstrated inverted patterns of alteration according to MAP levels during E-CPR and after ROSC. In standard-MAP, PRx was transiently positive during E-CPR before returning to negative values after ROSC, demonstrating a reversible alteration of cerebral autoregulation during E-CPR. In high-MAP, PRx was negative during E-CPR but became sustainably positive after ROSC, demonstrating a prolonged alteration in cerebral autoregulation after ROSC. It was associated with a significant decrease in cerebral oxygen consumption in high- versus standard-MAP after ROSC. CONCLUSIONS: During early E-CPR, MAP target above 80 mmHg is associated with higher carotid blood flow and improved cerebral autoregulation. This pattern is inverted after ROSC with a better hemodynamic status with standard versus high-MAP.


Assuntos
Pressão Arterial , Reanimação Cardiopulmonar , Circulação Cerebrovascular , Oxigenação por Membrana Extracorpórea , Animais , Pressão Arterial/fisiologia , Reanimação Cardiopulmonar/métodos , Circulação Cerebrovascular/fisiologia , Hemodinâmica , Suínos , Resultado do Tratamento
5.
BMC Vet Res ; 17(1): 220, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154593

RESUMO

BACKGROUND: 5-fluorocytosine is a pyrimidine and a fluorinated cytosine analog mainly used as an antifungal agent. It is a precursor of 5-fluorouracil, which possesses anticancer properties. To reduce systemic toxicity of 5-fluorouracil during chemotherapy, 5- fluorocytosine can be used as a targeted anticancer agent. Expression of cytosine deaminase by a viral vector within a tumor allows targeted chemotherapy by converting 5-fluorocytosine into the cytotoxic chemotherapeutic agent 5-fluorouracil. However, little is known about the tolerance of 5-fluorocytosine in dogs after prolonged administration. RESULTS: In three healthy Beagle dogs receiving 100 mg/kg of 5-fluorocytosine twice daily for 14 days by oral route, non-compartmental pharmacokinetics revealed a terminal elimination half-life of 164.5 ± 22.5 min at day 1 and of 179.2 ± 11.5 min, after 7 days of administration. Clearance was significantly decreased between day 1 and day 7 with 0.386 ± 0.031 and 0.322 ± 0.027 ml/min/kg, respectively. Maximal plasma concentration values were below 100 µg/ml, which is considered within the therapeutic margin for human patients. 5-fluorouracil plasma concentration was below the limit of detection at all time points. The main adverse events consisted of depigmented, ulcerated, exudative, and crusty cutaneous lesions 10 to 13 days after beginning 5-fluorocytosine administration. The lesions were localized to the nasal planum, the lips, the eyelids, and the scrotum. Histological analyses were consistent with a cutaneous lupoid drug reaction. Complete healing was observed 15 to 21 days after cessation of 5-fluorocytosine. No biochemical or hematological adverse events were noticed. CONCLUSIONS: Long term administration of 5-fluorocytosine was associated with cutaneous toxicity in healthy dogs. It suggests that pharmacotherapy should be adjusted to reduce the toxicity of 5-fluorocytosine in targeted chemotherapy.


Assuntos
Doenças do Cão/induzido quimicamente , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/veterinária , Flucitosina/efeitos adversos , Flucitosina/farmacocinética , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Cães , Erupção por Droga/veterinária , Feminino , Flucitosina/administração & dosagem , Fluoruracila/sangue , Masculino
6.
Ann Intensive Care ; 11(1): 81, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34002305

RESUMO

BACKGROUND: The administration of epinephrine in the management of non-traumatic cardiac arrest remains recommended despite controversial effects on neurologic outcome. The use of resuscitative endovascular balloon occlusion of the aorta (REBOA) could be an interesting alternative. The aim of this study was to compare the effects of these 2 strategies on return of spontaneous circulation (ROSC) and cerebral hemodynamics during cardiopulmonary resuscitation (CPR) in a swine model of non-traumatic cardiac arrest. RESULTS: Anesthetized pigs were instrumented and submitted to ventricular fibrillation. After 4 min of no-flow and 18 min of basic life support (BLS) using a mechanical CPR device, animals were randomly submitted to either REBOA or epinephrine administration before defibrillation attempts. Six animals were included in each experimental group (Epinephrine or REBOA). Hemodynamic parameters were similar in both groups during BLS, i.e., before randomization. After epinephrine administration or REBOA, mean arterial pressure, coronary and cerebral perfusion pressures similarly increased in both groups. However, carotid blood flow (CBF) and cerebral regional oxygenation saturation were significantly higher with REBOA as compared to epinephrine administration (+ 125% and + 40%, respectively). ROSC was obtained in 5 animals in both groups. After resuscitation, CBF remained lower in the epinephrine group as compared to REBOA, but it did not achieve statistical significance. CONCLUSIONS: During CPR, REBOA is as efficient as epinephrine to facilitate ROSC. Unlike epinephrine, REBOA transitorily increases cerebral blood flow and could avoid its cerebral detrimental effects during CPR. These experimental findings suggest that the use of REBOA could be beneficial in the treatment of non-traumatic cardiac arrest.

7.
Shock ; 56(5): 857-864, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33978607

RESUMO

ABSTRACT: Mitochondria is often considered as the common nexus of cardiac and cerebral dysfunction after cardiac arrest. Here, our goal was to determine whether the time course of cardiac and cerebral mitochondrial dysfunction is similar after shockable versus non-shockable cardiac arrest in rabbits. Anesthetized rabbits were submitted to 10 min of no-flow by ventricular fibrillation (VF group) or asphyxia (non-shockable group). They were euthanized at the end of the no-flow period or 30 min, 120 min, or 24 h after resuscitation for in vitro evaluation of oxygen consumption and calcium retention capacity. In the brain (cortex and hippocampus), moderate mitochondrial dysfunction was evidenced at the end of the no-flow period after both causes of cardiac arrest versus baseline. It partly recovered at 30 and 120 min after cardiac arrest, with lower calcium retention capacity and higher substrate-dependant oxygen consumption after VF versus non-shockable cardiac arrest. However, after 24 h of follow-up, mitochondrial dysfunction dramatically increased after both VF and non-shockable cardiac arrest, despite greater neurological dysfunction after the latter one. In the heart, mitochondrial dysfunction was also maximal after 24 h following resuscitation, with no significant difference among the causes of the cardiac arrest. During the earlier timing of evaluation, calcium retention capacity and ADP-dependant oxygen consumption were lower and higher, respectively, after non-shockable cardiac arrest versus VF. In conclusion, the kinetics of cardiac and cerebral mitochondrial dysfunction suggests that mitochondrial function does not play a major role in the early phase of the post-resuscitation process but is only involved in the longer pathophysiological events.


Assuntos
Encefalopatias/fisiopatologia , Encéfalo/ultraestrutura , Parada Cardíaca/fisiopatologia , Mitocôndrias/fisiologia , Fibrilação Ventricular/fisiopatologia , Animais , Masculino , Mitocôndrias Cardíacas/fisiologia , Coelhos
8.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806919

RESUMO

Argon inhalation attenuates multiorgan failure (MOF) after experimental ischemic injury. We hypothesized that this protection could involve decreased High Mobility Group Box 1 (HMGB1) systemic release. We investigated this issue in an animal model of MOF induced by aortic cross-clamping. Anesthetized rabbits were submitted to supra-coeliac aortic cross-clamping for 30 min, followed by 300 min of reperfusion. They were randomly divided into three groups (n = 7/group). The Control group inhaled nitrogen (70%) and oxygen (30%). The Argon group was exposed to a mixture of argon (70%) and oxygen (30%). The last group inhaled nitrogen/oxygen (70/30%) with an administration of the HMGB1 inhibitor glycyrrhizin (4 mg/kg i.v.) 5 min before aortic unclamping. At the end of follow-up, cardiac output was significantly higher in Argon and Glycyrrhizin vs. Control (60 ± 4 and 49 ± 4 vs. 33 ± 8 mL/kg/min, respectively). Metabolic acidosis was attenuated in Argon and Glycyrrhizin vs. Control, along with reduced amount of norepinephrine to reverse arterial hypotension. This was associated with reduced interleukin-6 and HMGB1 plasma concentration in Argon and Glycyrrhizin vs. Control. End-organ damages were also attenuated in the liver and kidney in Argon and Glycyrrhizin vs. Control, respectively. Argon inhalation reduced HMGB1 blood level after experimental aortic cross-clamping and provided similar benefits to direct HMGB1 inhibition.


Assuntos
Argônio/farmacologia , Proteína HMGB1/antagonistas & inibidores , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/metabolismo , Animais , Biópsia , Pressão Sanguínea/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Citocinas/sangue , Modelos Animais de Doenças , Testes de Função Cardíaca , Hemodinâmica/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/etiologia , Coelhos
9.
J Am Heart Assoc ; 9(23): e017413, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198571

RESUMO

Background Total liquid ventilation (TLV) has been shown to prevent neurological damage though ultrafast cooling in animal models of cardiac arrest. We investigated whether its neuroprotective effect could be explained by mitigation of early inflammatory events. Methods and Results Rabbits were submitted to 10 minutes of ventricular fibrillation. After resuscitation, they underwent normothermic follow-up (control) or ultrafast cooling by TLV and hypothermia maintenance for 3 hours (TLV). Immune response, survival, and neurological dysfunction were assessed for 3 days. TLV improved neurological recovery and reduced cerebral lesions and leukocyte infiltration as compared with control (eg, neurological dysfunction score=34±6 versus 66±6% at day 1, respectively). TLV also significantly reduced interleukin-6 blood levels during the hypothermic episode (298±303 versus 991±471 pg/mL in TLV versus control at 3 hours after resuscitation, respectively), but not after rewarming (752±563 versus 741±219 pg/mL in TLV versus control at 6 hours after resuscitation, respectively). In vitro assays confirmed the high temperature sensitivity of interleukin-6 secretion. Conversely, TLV did not modify circulating high-mobility group box 1 levels or immune cell recruitment into the peripheral circulation. The link between interleukin-6 early transcripts (<8 hours) and neurological outcome in a subpopulation of the previously described Epo-ACR-02 (High Dose of Erythropoietin Analogue After Cardiac Arrest) trial confirmed the importance of this cytokine at the early stages as compared with delayed stages (>8 hours). Conclusions The neuroprotective effect of hypothermic TLV was associated with a mitigation of humoral interleukin-6 response. A temperature-dependent attenuation of immune cell reactivity during the early phase of the post-cardiac arrest syndrome could explain the potent effect of rapid hypothermia. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT00999583.


Assuntos
Parada Cardíaca/sangue , Parada Cardíaca/terapia , Hipotermia Induzida , Ventilação Líquida , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Proteína HMGB1/sangue , Parada Cardíaca/patologia , Humanos , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Coelhos , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue
10.
EBioMedicine ; 52: 102365, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31447395

RESUMO

BACKGROUND: Total liquid ventilation (TLV) of the lungs could provide radically new benefits in critically ill patients requiring lung lavage or ultra-fast cooling after cardiac arrest. It consists in an initial filling of the lungs with perfluorocarbons and subsequent tidal ventilation using a dedicated liquid ventilator. Here, we propose a new paradigm for a lung-conservative TLV using pulmonary volumes of perfluorocarbons below functional residual capacity (FRC). METHODS AND FINDINGS: Using a dedicated technology, we showed that perfluorocarbon end-expiratory volumes could be maintained below expected FRC and lead to better respiratory recovery, preserved lung structure and accelerated evaporation of liquid residues as compared to complete lung filling in piglets. Such TLV below FRC prevented volutrauma through preservation of alveolar recruitment reserve. When used with temperature-controlled perfluorocarbons, this lung-conservative approach provided neuroprotective ultra-fast cooling in a model of hypoxic-ischemic encephalopathy. The scale-up and automating of the technology confirmed that incomplete initial lung filling during TLV was beneficial in human adult-sized pigs, despite larger size and maturity of the lungs. Our results were confirmed in aged non-human primates, confirming the safety of this lung-conservative approach. INTERPRETATION: This study demonstrated that TLV with an accurate control of perfluorocarbon volume below FRC could provide the full potential of TLV in an innovative and safe manner. This constitutes a new paradigm through the tidal liquid ventilation of incompletely filled lungs, which strongly differs from the previously known TLV approach, opening promising perspectives for a safer clinical translation. FUND: ANR (COOLIVENT), FRM (DBS20140930781), SATT IdfInnov (project 273).


Assuntos
Ventilação Líquida/métodos , Pulmão , Reabilitação , Animais , Biópsia , Cuidados Críticos , Fluorocarbonos/administração & dosagem , Hipotermia Induzida , Imuno-Histoquímica , Ventilação Líquida/instrumentação , Macaca fascicularis , Recuperação de Função Fisiológica , Reabilitação/instrumentação , Reabilitação/métodos , Testes de Função Respiratória , Suínos , Tomografia Computadorizada por Raios X
11.
Sci Rep ; 8(1): 16436, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401816

RESUMO

Patient mortality at one year reaches 90% after out-of-hospital cardiac arrest and resuscitation. Temperature management is one of the main strategies proposed to improve patient outcome after resuscitation and preclinical studies have shown neuroprotective effects when hypothermia is achieved rapidly, although the underlying mechanisms have not yet been elucidated. State-of-the-art brain imaging technologies can bring new insights into the early cerebral events taking place post cardiac arrest and resuscitation. In this paper, we characterized cerebral hemodynamics in a post-cardiac arrest rabbit model using functional ultrasound imaging. Ultrasound datasets were processed to map the dynamic changes in cerebral blood flow and cerebral vascular resistivity with a 10 second repetition rate while animals underwent cardiac arrest and a cardiopulmonary resuscitation. We report that a severe transient hyperemia takes place in the brain within the first twenty minutes post resuscitation, emphasizing the need for fast post-cardiac arrest care. Furthermore, we observed that this early hyperemic event is not spatially homogeneous and that maximal cerebral hyperemia happens in the hippocampus. Finally, we show that rapid cooling induced by total liquid ventilation reduces early cerebral hyperemia, which could explain the improved neurological outcome reported in preclinical studies.


Assuntos
Reanimação Cardiopulmonar/métodos , Circulação Cerebrovascular , Modelos Animais de Doenças , Parada Cardíaca/diagnóstico por imagem , Hemodinâmica , Hipotermia Induzida/métodos , Ultrassonografia/métodos , Animais , Parada Cardíaca/patologia , Parada Cardíaca/terapia , Masculino , Coelhos
12.
Ann Thorac Surg ; 106(6): 1797-1803, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30120942

RESUMO

BACKGROUND: Ischemic spinal cord injury is a devastating condition after aortic surgery. We determined whether ultrafast and short whole-body hypothermia provided by total liquid ventilation (TLV) attenuated lower limb paralysis after aortic cross-clamping with a targeted temperature management at 33°C versus 36°C. METHODS: Anesthetized rabbits were submitted to infrarenal aortic cross-clamping during 15 min. A control group (n = 7) was maintained at normothermia (38°C to 38.5°C) with conventional mechanical ventilation. In TLV groups, TLV was started after reperfusion and maintained during 30 min with a target temperature at either 33°C or 36°C (TLV-33°C and TLV-36°C, respectively; n = 7 in each condition). After TLV, animals were resumed to conventional ventilation. Hypothermia was maintained during 120 min, before rewarming and awakening. Hind limb motor function was assessed with modified Tarlov score at day 2 and infarct size in the spinal cord was determined using triphenyltetrazolium chloride staining. RESULTS: Target temperature was achieved within 20 minutes in the two TLV groups. At day 2, the modified Tarlov score was significantly lower in the control group, as compared with TLV-33°C and TLV-36°C groups (0.0 ± 0.0 versus 3.1 ± 0.7 and 2.6 ± 0.6, respectively). The infarct size of the spinal cord was also significantly higher in the control group compared with TLV-33°C and TLV-36°C groups (75% ± 10% versus 32% ± 7% and 28% ± 10%, respectively). Neither motor function nor infarct size differed significantly between TLV-33°C and TLV-36°C groups. CONCLUSIONS: Ultrafast hypothermic TLV attenuates spinal cord injury when applied after ischemic insult. Neurological outcome was similar with targeted temperature management at either 33°C or 36°C.


Assuntos
Hipotermia Induzida/métodos , Ventilação Líquida , Isquemia do Cordão Espinal/terapia , Animais , Masculino , Coelhos , Distribuição Aleatória
13.
Ann Intensive Care ; 8(1): 57, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29721820

RESUMO

BACKGROUND: Ultrafast cooling by total liquid ventilation (TLV) provides potent cardio- and neuroprotection after experimental cardiac arrest. However, this was evaluated in animals with no initial lung injury, whereas out-of-hospital cardiac arrest is frequently associated with early-onset pneumonia, which may lead to acute respiratory distress syndrome (ARDS). Here, our objective was to determine whether hypothermic TLV could be safe or even beneficial in an aspiration-associated ARDS animal model. METHODS: ARDS was induced in anesthetized rabbits through a two-hits model including the intra-tracheal administration of a pH = 1 solution mimicking gastric content and subsequent gaseous non-protective ventilation during 90 min (tidal volume [Vt] = 10 ml/kg with positive end-expiration pressure [PEEP] = 0 cmH2O). After this initial period, animals either received lung protective gas ventilation (LPV; Vt = 8 ml/kg and PEEP = 5 cmH2O) under normothermic conditions, or hypothermic TLV (TLV; Vt = 8 ml/kg and end-expiratory volume = 15 ml/kg). Both strategies were applied for 120 min with a continuous monitoring of respiratory and cardiovascular parameters. Animals were then euthanized for pulmonary histological analyses. RESULTS: Eight rabbits were included in each group. Before randomization, all animals elicited ARDS with arterial oxygen partial pressure over inhaled oxygen fraction ratios (PaO2/FiO2) below 100 mmHg, as well as decreased lung compliance. After randomization, body temperature rapidly decreased in TLV versus LPV group (32.6 ± 0.6 vs. 38.2 ± 0.4 °C after 15 min). Static lung compliance and gas exchanges were not significantly different in the TLV versus LPV group (PaO2/FiO2 = 62 ± 4 vs. 52 ± 8 mmHg at the end of the procedure, respectively). Mean arterial pressure and arterial bicarbonates levels were significantly higher in TLV versus LPV. Histological analysis also showed significantly lower inflammation in TLV versus LPV group (median histological score = 3 vs. 4.5/5, respectively; p = 0.03). CONCLUSION: Hypothermic TLV can be safely induced in rabbits during aspiration-associated ARDS. It modified neither gas exchanges nor respiratory mechanics but reduced lung inflammation and hemodynamic failure in comparison with LPV. Since hypothermic TLV was previously shown to provide neuro- and cardio protective effects after cardiac arrest, these findings suggest a possible use of TLV in the settings of cardiac arrest-associated ARDS.

14.
J Am Heart Assoc ; 7(8)2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626151

RESUMO

BACKGROUND: Ischemia-reperfusion injury following ST-segment-elevation myocardial infarction (STEMI) is a leading determinant of clinical outcome. In experimental models of myocardial ischemia, succinate accumulation leading to mitochondrial dysfunction is a major cause of ischemia-reperfusion injury; however, the potential importance and specificity of myocardial succinate accumulation in human STEMI is unknown. We sought to identify the metabolites released from the heart in patients undergoing primary percutaneous coronary intervention for emergency treatment of STEMI. METHODS AND RESULTS: Blood samples were obtained from the coronary artery, coronary sinus, and peripheral vein in patients undergoing primary percutaneous coronary intervention for acute STEMI and in control patients undergoing nonemergency coronary angiography or percutaneous coronary intervention for stable angina or non-STEMI. Plasma metabolites were analyzed by targeted liquid chromatography and mass spectrometry. Metabolite levels for coronary artery, coronary sinus, and peripheral vein were compared to derive cardiac and systemic release ratios. In STEMI patients, cardiac magnetic resonance imaging was performed 2 days and 6 months after primary percutaneous coronary intervention to quantify acute myocardial edema and final infarct size, respectively. In total, 115 patients undergoing acute STEMI and 26 control patients were included. Succinate was the only metabolite significantly increased in coronary sinus blood compared with venous blood in STEMI patients, indicating cardiac release of succinate. STEMI patients had higher succinate concentrations in arterial, coronary sinus, and peripheral venous blood than patients with non-STEMI or stable angina. Furthermore, cardiac succinate release in STEMI correlated with the extent of acute myocardial injury, quantified by cardiac magnetic resonance imaging. CONCLUSION: Succinate release by the myocardium correlates with the extent of ischemia.


Assuntos
Traumatismo por Reperfusão Miocárdica/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Ácido Succínico/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Angiografia Coronária , Feminino , Seguimentos , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Traumatismo por Reperfusão Miocárdica/diagnóstico , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/metabolismo , Miocárdio/patologia , Intervenção Coronária Percutânea/métodos , Prognóstico , Estudos Retrospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Fatores de Tempo
15.
Br J Clin Pharmacol ; 84(6): 1170-1179, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29388238

RESUMO

AIMS: Argon has been shown to prevent ischaemic injuries in several scenarios of regional ischaemia. We determined whether it could provide a systemic effect in a model of multiorgan failure (MOF) induced by aortic cross-clamping. METHODS: Anaesthetized rabbits were submitted to aortic cross-clamping (30 min) and subsequent reperfusion (300 min). They were either ventilated with oxygen-enriched air throughout the protocol [fraction of inspired oxygen (FiO2 ) = 30%; control group) or with a mixture of 30% oxygen and 70% argon (argon groups). In a first group treated with argon ('Argon-Total'), its administration was started 30 min before ischaemia and maintained throughout the protocol. In the two other groups, the administration was started either 30 min before ischaemia ('Argon-Pre') or at the onset of reperfusion ('Argon-Post'), for a total duration of 2 h. Cardiovascular, renal and inflammatory endpoints were assessed throughout protocol. RESULTS: Compared with control, shock was significantly attenuated in Argon-Total and Argon-Pre but not Argon-Post groups (e.g. cardiac output = 62±5 vs. 29 ± 5 ml min-1 kg-1 in Argon-Total and control groups at the end of the follow-up). Shock and renal failure were reduced in all argon vs. control groups. Histopathological examination of the gut showed attenuation of ischaemic lesions in all argon vs. control groups. Blood transcription levels of interleukin (IL) 1ß, IL-8, IL-10 and hypoxia-inducible factor 1α were not significantly different between groups. CONCLUSION: Argon attenuated clinical and biological modifications of cardiovascular, renal and intestinal systems, but not the inflammatory response, after aortic cross-clamping. The window of administration was crucial to optimize organ protection.


Assuntos
Injúria Renal Aguda/prevenção & controle , Aorta/cirurgia , Argônio/administração & dosagem , Isquemia Mesentérica/prevenção & controle , Insuficiência de Múltiplos Órgãos/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Insuficiência Renal/prevenção & controle , Choque Cardiogênico/prevenção & controle , Injúria Renal Aguda/sangue , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Administração por Inalação , Animais , Aorta/fisiopatologia , Constrição , Modelos Animais de Doenças , Hemodinâmica , Subunidade alfa do Fator 1 Induzível por Hipóxia/sangue , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/sangue , Inflamação/etiologia , Mediadores da Inflamação/sangue , Interleucinas/sangue , Interleucinas/genética , Masculino , Isquemia Mesentérica/sangue , Isquemia Mesentérica/etiologia , Isquemia Mesentérica/fisiopatologia , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/fisiopatologia , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Coelhos , Fluxo Sanguíneo Regional , Insuficiência Renal/sangue , Insuficiência Renal/etiologia , Insuficiência Renal/fisiopatologia , Choque Cardiogênico/sangue , Choque Cardiogênico/etiologia , Choque Cardiogênico/fisiopatologia , Fatores de Tempo
17.
IEEE Trans Biomed Eng ; 64(12): 2760-2770, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28237918

RESUMO

GOAL: Recent preclinical studies have shown that therapeutic hypothermia induced in less than 30 min by total liquid ventilation (TLV) strongly improves the survival rate after cardiac arrest. When the lung is ventilated with a breathable perfluorocarbon liquid, the inspired perfluorocarbon allows us to control efficiently the cooling process of the organs. While TLV can rapidly cool animals, the cooling speed in humans remains unknown. The objective is to predict the efficiency and safety of ultrafast cooling by TLV in adult humans. METHODS: It is based on a previously published thermal model of ovines in TLV and the design of a direct optimal controller to compute the inspired perfluorocarbon temperature profile. The experimental results in an adult sheep are presented. The thermal model of sheep is subsequently projected to a human model to simulate the optimal hypothermia induction and its sensitivity to physiological parameter uncertainties. RESULTS: The results in the sheep showed that the computed inspired perfluorocarbon temperature command can avoid arterial temperature undershoot. The projection to humans revealed that mild hypothermia should be ultrafast (reached in fewer than 3 min (-72 °C/h) for the brain and 20 min (-10 °C/h) for the entire body). CONCLUSION: The projection to human model allows concluding that therapeutic hypothermia induction by TLV can be ultrafast and safe. SIGNIFICANCE: This study is the first to simulate ultrafast cooling by TLV in a human model and is a strong motivation to translate TLV to humans to improve the quality of life of postcardiac arrest patients.


Assuntos
Fluorocarbonos , Hipotermia Induzida/métodos , Ventilação Líquida/métodos , Adulto , Animais , Encéfalo/fisiologia , Simulação por Computador , Fluorocarbonos/administração & dosagem , Fluorocarbonos/uso terapêutico , Parada Cardíaca/terapia , Humanos , Pulmão/fisiologia , Modelos Biológicos , Ovinos , Temperatura
18.
J Am Heart Assoc ; 5(12)2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28007740

RESUMO

BACKGROUND: Extracorporeal cardiopulmonary resuscitation (ECPR) is widely proposed for the treatment of refractory cardiac arrest. It should be associated with coronary angiography if coronary artery disease is suspected. However, the prioritization of care remains unclear in this situation. Our goal was to determine whether coronary reperfusion should be instituted as soon as possible in such situations in a pig model. METHODS AND RESULTS: Anesthetized pigs were instrumented and submitted to coronary artery occlusion and ventricular fibrillation. After 5 minutes of untreated cardiac arrest, conventional cardiopulmonary resuscitation (CPR) was started. Fifteen minutes later, ECPR was initiated for a total duration of 240 minutes. Animals randomly underwent either early or late coronary reperfusion at 20 or 120 minutes of ECPR, respectively. This timing was adapted to the kinetic of infarct extension in pigs. Return of spontaneous circulation was determined as organized electrocardiogram rhythm with systolic arterial pressure above 80 mm Hg. During conventional CPR, hemodynamic parameters were not different between groups. Carotid blood flow then increased by 70% after the onset of ECPR in both groups. No animal (0 of 7) elicited return of spontaneous circulation after late reperfusion versus 4 of 7 after early reperfusion (P=0.025). The hemodynamic parameters, such as carotid blood flow, were also improved in early versus late reperfusion groups (113±20 vs 43±17 mL/min after 240 minutes of ECPR, respectively; P=0.030), along with infarct size decrease (71±4% vs 84±2% of the risk zone, respectively; P=0.013). CONCLUSIONS: Early reperfusion improved hemodynamic status and facilitated return of spontaneous circulation in a porcine model of ischemic cardiac arrest treated by ECPR.


Assuntos
Reanimação Cardiopulmonar/métodos , Circulação Extracorpórea/métodos , Parada Cardíaca/terapia , Isquemia Miocárdica/terapia , Reperfusão Miocárdica , Fibrilação Ventricular/terapia , Animais , Pressão Sanguínea , Vasos Coronários/cirurgia , Eletrocardiografia , Feminino , Parada Cardíaca/etiologia , Hemodinâmica , Isquemia Miocárdica/complicações , Sus scrofa , Suínos , Fibrilação Ventricular/etiologia
19.
Arch Cardiovasc Dis ; 109(12): 716-722, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27692660

RESUMO

The cardioprotective effect of therapeutic hypothermia (32-34°C) has been well demonstrated in animal models of acute myocardial infarction. Beyond infarct size reduction, this protection was associated with prevention of the no-reflow phenomenon and long-term improvement in terms of left ventricular remodelling and performance. However, all these events were observed when hypothermia was induced during the ischaemic episode, and most benefits virtually vanished after reperfusion. This is consistent with clinical findings showing a lack of benefit from hypothermia in patients presenting acute myocardial infarction in most trials. In these studies, hypothermia was most often achieved too far into the reperfusion phase (i.e. possibly too late to reduce infarct size); this is supported by meta-analyses and subgroup analyses suggesting that the benefits of hypothermia could still be observed in patients with a large infarction and more rapid cooling before reperfusion. Novel strategies for ultra-fast induction of hypothermia and/or prehospital cooling might therefore be more beneficial.


Assuntos
Hipotermia Induzida/métodos , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Humanos , Fatores de Tempo
20.
Anesth Analg ; 123(3): 659-69, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27482772

RESUMO

BACKGROUND: In animal models, whole-body cooling reduces end-organ injury after cardiac arrest and other hypoperfusion states. The benefits of cooling in humans, however, are uncertain, possibly because detrimental effects of prolonged cooling may offset any potential benefit. Total liquid ventilation (TLV) provides both ultrafast cooling and rewarming. In previous reports, ultrafast cooling with TLV potently reduced neurological injury after experimental cardiac arrest in animals. We hypothesized that a brief period of rapid cooling and rewarming via TLV could also mitigate multiorgan failure (MOF) after ischemia-reperfusion induced by aortic cross-clamping. METHODS: Anesthetized rabbits were submitted to 30 minutes of supraceliac aortic cross-clamping followed by 300 minutes of reperfusion. They were allocated either to a normothermic procedure with conventional ventilation (control group) or to hypothermic TLV (33°C) before, during, and after cross-clamping (pre-clamp, per-clamp, and post-clamp groups, respectively). In all TLV groups, hypothermia was maintained for 75 minutes and switched to a rewarming mode before resumption to conventional mechanical ventilation. End points included cardiovascular, renal, liver, and inflammatory parameters measured 300 minutes after reperfusion. RESULTS: In the normothermic (control) group, ischemia-reperfusion injury produced evidence of MOF including severe vasoplegia, low cardiac output, acute kidney injury, and liver failure. In the TLV group, we observed gradual improvements in cardiac output in post-clamp, per-clamp, and pre-clamp groups versus control (53 ± 8, 64 ± 12, and 90 ± 24 vs 36 ± 23 mL/min/kg after 300 minutes of reperfusion, respectively). Liver biomarker levels were also lower in pre-clamp and per-clamp groups versus control. However, acute kidney injury was prevented in pre-clamp, and to a limited extent in per-clamp groups, but not in the post-clamp group. For instance, creatinine clearance was 4.8 ± 3.1 and 0.5 ± 0.6 mL/kg/min at the end of the follow-up in pre-clamp versus control animals (P = .0004). Histological examinations of the heart, kidney, liver, and jejunum in TLV and control groups also demonstrated reduced injury with TLV. CONCLUSIONS: A brief period of ultrafast cooling with TLV followed by rapid rewarming attenuated biochemical and histological markers of MOF after aortic cross-clamping. Cardiovascular and liver dysfunctions were limited by a brief period of hypothermic TLV, even when started after reperfusion. Conversely, acute kidney injury was limited only when hypothermia was started before reperfusion. Further work is needed to determine the clinical significance of our results and to identify the optimal duration and timing of TLV-induced hypothermia for end-organ protection in hypoperfusion states.


Assuntos
Aorta/patologia , Hipotermia Induzida/métodos , Ventilação Líquida/métodos , Insuficiência de Múltiplos Órgãos/patologia , Insuficiência de Múltiplos Órgãos/prevenção & controle , Animais , Constrição , Masculino , Insuficiência de Múltiplos Órgãos/etiologia , Coelhos , Distribuição Aleatória , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...